PHENOLIC RESIN WORK SURFACES

PRODUCT DEFINITION

Manufactured using a unique Electron Beam Curing (EBC) technology, Phenolic Resin Work Surfaces are easy to clean and show a high resistance to a large number of aggressive chemicals. It also has inherent antibacterial properties without the addition of microbial additives. Phenolic Resin Work Surfaces provide an ideal choice in environments where hygiene, avoidance of contamination, sustainability, ergonomics and safety are of importance. Phenolic Resin Work Surfaces are extensively used in a wide variety of lab environments worldwide, including chemical, physical, analytical and microbiological laboratories.

Black, White or Gray surface. Core is black.

EDGE PROFILE

SPECIFICATIONS:

Thickness: 1" std.
Maximum size: $60^{\prime \prime} \times 120^{\prime \prime}$ or $73^{\prime \prime} \times 96^{\prime \prime}$

RESISTANCE TO CHEMICALS:

Resistant to diluted strong bases and acids. Easy to clean and disinfect, given its resistance to common lab cleaners:

- Acetone
- Toluene
- Etyhlic and Methylic Alcohol
- Dimethylformamide -DMF
- Dimethylsulphoxide -DMSO
- Tetrahydrofuran -THF
- Turpentine
- Methyl Chetone
- Ammonia
- Caustic Soda
- Potassium Hydroxide, up to 10%

CARE AND MAINTENANCE

Surface can be cleaned with soapy water and common organic solvents (alcohol, benzine, acetone, methyl ethyl keytone, perchloroethylene). Avoid use of detergents with high concentrations of strong acids or bases (i.e. formic, hydrochloric, sulfuric and nitric acid).

Do not use abrasive pads or powders which may cause damage

PHENOLIC RESIN WORK SURFACES

Decorative high-pressure compact laminates according to EN 438-4:2005 of thicknesses of $6 \mathrm{~mm}(\pm 1 / 4 \mathrm{in}$) or greater for interior use. Sheets consisting of layers of wood-based fibres (paper and/or wood) impregnated with thermosetting resins and surface layer(s) on one or both sides, having decorative colours or designs. The surface layers are impregnated with melamine based resins. These components are bonded together with simultaneous application of heat ($\geq 150^{\circ} \mathrm{C} / \geq 302^{\circ} \mathrm{F}$) and high specific pressure (> 7 MPa) to obtain a homogeneous non-porous material with increased density and integral decorative surface They are available in the Standard grade (CGS) and in the Fire-Retardant grade (CGF).

Properties	Test method	Property or attribute	Unit	
				Grade: CGS
				Standard: EN 438-4
				Colour/Decort All
Surface quality				
		Spots, dirt, similar surface defects	$\mathrm{mm}^{2} / \mathrm{m}^{2}$	≤ 1
Surf	EN 438-2 : 4	Spots, dirt, similar surface defects	$\mathrm{in}^{2} / \mathrm{ft}^{2}$	≤ 0.0001
	EN		$\mathrm{mm} / \mathrm{m}^{2}$	≤ 10
		Fibres, hairs \& scratches	in/ $/ \mathrm{t}^{2}$	≤ 0.036
Dimensional tolerances				
				$6.0 \leq t<8.0:+/-0.40$
				$8.0 \leq t<12.0:+/-0.50$
			mm	$12.0 \leq t<16.0:+/-0.60$
				$16.0 \leq t<20.0:+/-0.70$
		Thic		$20.0 \leq t \leq 25.0:+/-0.80$
				$0.2362 \leq t<0.3150:+/-0.0157$
				$0.3150 \leq t<0.4724:+/-0.0197$
			in	$0.4724 \leq t<0.6299:+/-0.0236$
				$0.6299 \leq t<0.7874:+/-0.0275$
				$0.7874 \leq t \leq 0.9842:+/-0.0315$
	EN	Flatness	mm / m	≤ 2
	EN	Flatness	$\mathrm{in} / \mathrm{ft}$	≤ 0.024
	EN 438-2 : 6	Length \& width	mm	+ $5 /-0$
	EN 438-2.6	Lengt \& widm	in	+ 0.1968/-0
	EN 438-2 : 7	Straightness of edges	mm / m	≤ 1
	EN 438-2 : 7	Straightness of edges	$\mathrm{in} / \mathrm{ft}$	≤ 0.012
			mm	$2550 \times 1860=$ max. difference between diagonals $(x-y)=4$
			mm	$3050 \times 1530=$ max. difference between diagonals $(x-y)=4$
	Trespa Standard	Squareness	in	$100.39 \times 73.23=$ max. difference between diagonals $(x-y)=0.1575$
			in	$120.08 \times 60.24=$ max. difference between diagonals $(x-y)=0.1575$
Physical properties				
Resistance to surface wear	EN 438-2 : 10	Wear resistance - Revolutions (min)	Initial point	≥ 150
		Wear resistance - Revolutions (min)	Wear value	≥ 350
Resistance to impact by large diameter ball	EN 438-2 : 21	Indentation diameter - $6 \leq t \mathrm{~mm}$ with drop height 1.8 m	mm	≤ 10
Resistance to scratching	EN 438-2 : 25	Force	Rating (min)	≥ 3
Resistance to dry heat ($160^{\circ} \mathrm{C} / 320^{\circ} \mathrm{F}$)	EN 438-2 : 16	Appearance	Rating (min)	≥ 4
Resistance to wet heat ($100^{\circ} \mathrm{C} / 212^{\circ} \mathrm{F}$)	EN 12721	Appearance	Rating (min)	≥ 4
		Mass increase (\% max)	$t \geq 6 \mathrm{~mm}$	≤ 1
Resistance to immersion in boiling water	EN 438-2 : 12	Thickness increase (\% max)	$t \geq 6 \mathrm{~mm}$	≤ 1
		Appearance	Rating (min)	≥ 4
Dimensional stability at elevated	EN 438-2 : 17	Cumulative dimensional change	Longitudinal \%	≤ 0.30
temperature	EN 438-2. 17	Cumularive dimensional change	Transversal \%	≤ 0.60
Resistance to staining	EN 438-2 : 26	Appearance - Rating (min)	Group 1 \& 2	5
Resistance to staining	EN 438-2. 26	Appearance - Raling (min)	Group 3	4
Light fastness (xenon arc)	EN 438-2 : 27	Contrast (Wool scale)	ASTM G53-91 (314-400nm)	≥ 6
Resistance to water vapour	EN 438-2 : 14	Appearance	Rating (min)	≥ 4
Resistance to cigarette burns	EN 438-2 : 30	Appearance	Rating (min)	≥ 3
Resistance to crazing	EN 438-2 : 24	Appearance	Grade (min)	≥ 4
Modulus of elasticity	EN ISO 178	Stress	MPa	≥ 9000
Flexural strength	EN ISO 178	Stress	MPa	≥ 100
Tensile strength	EN ISO 527-2	Stress	MPa	≥ 70
Density	EN ISO 1183	Density	$\mathrm{g} / \mathrm{cm}^{3}$	≥ 1.35
				$6 \mathrm{~mm}: \geq 2000$
Resistance to fixings	ISO 13894-1	Pull out strength	N	$8 \mathrm{~mm}: \geq 3000$
				$\geq 10 \mathrm{~mm}: \geq 4000$
Fire performance				
Europe				
		Classification $\dagger \geq 6 \mathrm{~mm} / 0.2362$ in	Euroclass	B-s2, d0
Reaction to Fire	EN 13501-1	Classification $\dagger \geq 8 \mathrm{~mm} / 0.3150$ in (Metal Frame)	Euroclass	D-s2, d0 B-s1, d0
North America				
		Classification	Class	B A
Material Surface Burning Characteristics \square	ASTM E84/UL 723	Flame Spread Index	FSI	26-75 0-25
		Smoke Developed Index	SDI	0-450 0-450
Other properties				
Realease of formaldehyde	EN 717-2	Classification	Class	E1

